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We use the theory of stochastic differential equations with rapidly fluctuat- 
ing coefficients to study the statistical dynamics of the Lorenz model in 
the turbulent region. On the assumption that the system is ergodic we are 
able to calculate self-consistently several basic statistical quantities in 
terms of the parameters of the model. Our results are in good agreement 
with numerical computations. 
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1. INTRODUCTION 

There are two basic approaches to the problem of turbulence. In the first, 
one seeks to obtain statistical solutions to the equations of motion by taking 
repeated moments of the equations and using some kind of a closure scheme 
to close the hierarchy of  moment equations. In the second, one solves non- 
linear differential equations obtained from the equations of motion, which 
have no explicit stochastic element in them, but which can, for certain ranges 
of values of the parameters, exhibit apparently random solutions owing to 
the appearance of a strange attractor. Both methods are assumed to be rele- 
vant to the problem of "turbulence," although the connection between the 
two is not immediately clear. 

The present paper is an attempt to provide a connection between these 
two approaches. More specifically, we aim to show that it is possible to apply 
the techniques developed for the solution of  stochastic differential equations 
(i.e., differential equations with randomly fluctuating coefficients) to systems 
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of coupled nonlinear ordinary differential equations with strange attractors. 
We do this by exhibiting an example of such a calculation. We restrict our- 
selves here to the consideration of the Lorenz equations, a~ the first and most 
famous example of a system with a strange attractor. An analogous calcula- 
tion for the R~Sssler equations (2~ will be presented elsewhere. The Lorenz 
equations are derivable from the first nontrivial truncation of a modal 
expansion of the equations for B6nard convection in the Boussinesq approxi- 
mation, and may be written in the standard dimensionless form 

2 = ~ ( y  - x)  ( l a )  

29 = r x  y x z  (1 b) 
= - v z  + x y  (lc) 

Here the variable x measures the vertical convective velocity, y the tempera- 
ture fluctuation, and z the mean convective temperature gradient; ~ is the 
Prandtl number of the fluid, r is a reduced Rayleigh number (r = 1 for the 
onset of convection), and v is related to the wave number of the convection 
rolls. If cr and v are fixed at 10 and 8/3, respectively (the values originally 
used by Saltzman(3~), and r is gradually increased, it is found that at r _ 24.74 
the solutions to the equations become unstable according to the linear theory, 
although there exist finite-amplitude instabilities already for r > 21. The 
system is then in the " turbulen t"  state, and remains in this state for r < 250. 
The model, based as it is on a physical system, is believed to describe quali- 
tatively the onset of turbulenceJ ~ 

In the following section we introduce our assumptions, and rewrite the 
Lorenz equations in a form suggestive of a stochastic differential equation. 
Applying certain results about this equation derived in the Appendix, we 
are then able to calculate several basic statistical moments of the solution 
in the turbulent regime in terms of the parameters of the model, and compare 
the results with the numerical evaluation of the corresponding quantities 
carried out by Lticke (~ and the author. A preliminary account of this work 
is given in Ref. 6. In view of some of the approximations made in solving the 
stochastic differential equation we find remarkably good agreement between 
the theory and the numerical results. Our conclusions are presented in 
Section 3. 

2. STATISTICAL D Y N A M I C S  OF THE LORENZ M O D E L  

In this section we shall be concerned with calculating various time 
averages, denoted by angular brackets, of the solution to Eqs. (1) in the 
turbulent regime. From the equations it is easy to show that 

( x )  = ( y )  = ( x z )  = ( y z )  = o (2) 
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Throughout what follows, we shall assume that the solutions of (1) in the 
turbulent regime are ergodic. Thus we shall assume that we may identify 
averages over an ensemble of realizations of the solution with time averages 
in any one realization. Here a realization is specified by the initial conditions; 
if these lie outside the strange attractor, only that part of the solution that 
lies subsequently within the attractor is included. Moreover, stable periodic 
orbits within the turbulent regime are also excluded, comprising as they do a 
subset of all solutions that is of "zero measure." In particular we shall 
assume that the solutions (with the above qualification) are statistically 
stationary. There is ample evidence for this property from numerical investi- 
gation, but a rigorous mathematical proof of this property is not available. 
As a consequence of this assumption all time derivatives of averages vanish. 
By writing down quantities of the form 

d <A(x, y, z)> = ~ A  aa aA ~',,, 
a-7 ~ + -b7 ~ + ~ / = 0 (3) 

and using Eqs. (1), it is possible to obtain an infinite number of relations 
between various averages. We obtain (5~ 

( x ~ y )  = ( x  k + 1), k integer (4a) 

<x =) = v ( z )  (4b) 

<xyz> : v<z2> (4c) 

(x2z) = (~ + 1)((y =) - (x2)) + v(z =) (4d) 

(x=z)  = ~ ( ( y2 )  _ ( x 2 ) )  + (r - 1)(x 2) (4e) 

(2~ + v) (x2z )  = 2~v(z 2) + (x 4) (4f) 

These relations have been verified numerically, (5~ providing further evidence 
for the validity of the stationariness hypothesis. From Eqs. (4) one obtains 
an important identity 

1 
-~ (~> = ( ( y  - x)  ~) = ~[(r - 1)(z> - (z~>] (5) 

An equivalent result has been given by Malkus(7): 

1 <~=> < ( z -  <z>)=> 
(x =) = v(z) = v(r - 1) a s (a) (z)  (6) 

Since (x =) = ( x y )  is the convective heat flux, this result shows that, within 
this model, the heat flux transported in turbulent convection has to be less 
than that transported in steady convection (2 = 0, a = (z)). In particular, 
Eqs. (5) and (6) show that 

( r -  1) = > ( r -  1)<z> > <z=> (7) 
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with equality only in steady convection. 
It may be observed that the number of relations of the type (3) is in- 

sumcient to determine all the averages. For example, the relations (4) enable 
one only to express the low-order moments in terms of the two unknown 
quantities (z> and (z2>, which are constrained only by the inequality (7). 
Our task will be to calculate these two moments. 

W e s ha l l  use the general method for solving stochastic differential 
equations with rapidly fluctuating coefficients. (8'9~ Suppose that we have a 
stochastic differential equation of the form 

df/dt = L ( t ) f  (8) 

where L(t) is a stochastic matrix. If Lo is the mean of L, and L1 = L - Lo 
is the rapidly fluctuating part of L that need not be independent off ,  then the 
mean of the process f ,  ( f>,  satisfies the equation 

d <f> = {Lo + f j  dr<L~(t)eLo~L~(t-.r)e-Lo~}(f(t)> (9) 

In order to apply this theory to the Lorenz model we rewrite Eqs. (1), 
by eliminating y, in the form 

where 

and 

5d + b2 + [ - a  + oJ(t)]x = 0 (10) 

a =  ~ ( r -  1 -  <z>), b = c r +  1 (11) 

oJ(t) = cr(z - <z>) (12) 

+ vz = -~ ~ x 2 + x 2 (13) 

Equation (10) is thus an equation of a linear "oscillator" with a zero-mean 
frequency modulation oJ(t). The quantity a is always positive definite, as 
can be seen from the inequality (7). We know from numerical studies that 
in the turbulent regime the quantities x and z are both rapidly fluctuating in 
time. This can be seen, for example, in the paper by Robbins (1~ dealing with 
the equations for the disk dynamo with a shunt, which can be transformed 
into the standard form (1). Thus w(t) is a rapidly fluctuating zero-mean 
random process, and the approximation leading to Eq. (9) is valid. 

The result (9) can be applied once Eq. (10) is written in the form (8). 
In view of (2), the first nontrivial moments of x and 2 are quadratic ones. 
As shown in the Appendix, Eq. (9) then has statistically stationary solutions 
provided 

= a)~2/b (14) 



On the Statistical Dynamics of the Lorenz Model 699 

HereA s = 4 a + b  2 , a n d  

;0 a = dr  ~7(r) cosh Ar (15) 

where ~7(r) is the autocorrelation function of the process ~o(t), defined by 

<o~(t)o~(t')> - ~7(t - t ') = ~(r) (16) 

In what follows we shall assume that o~(t) has an autocorrelation function 
that falls off sufficiently rapidly for the quantity a to be well defined. The 
condition (14) gives the "s t rength"  of  the fluctuations, or the energy input, 
required on average to counterbalance the damping term, and is thus an 
example of a fluctuation-dissipation theorem for an equilibrium system. The 
derivation leading to the result (14) requires that the autocorrelation time of  
~o(t) be short, but not too short, an assumption that is verified a posteriori, 
and that is in agreement with the numerical results. (z~ A 8-function-corre- 
lated process would be unable to balance the dissipation. The corresponding 
stationary solution to Eq. (9) is 

<22> = a<x2> (17) 

this being the analog for our oscillator of the usual virial theorem. 
We now apply these results to the calculation of the quantities <z> and 

<z2>. Consider first the quantity f2o 2 -- <22>/<x2>. From Eqs. (11) and (17) 
we obtain 

no 2 = , , ( r -  1 - <z>) (18) 
On the other hand, using Eq. (6), we find 

= 1 <z2>]<z> l (19) 

We shall be interested in studying the quantities ~ and k defined by 

(z> = ( r -  1)(1 - ~), 0 < g < 1 (20) 

(z2> = <z>2/(1 - A2), 0 < A < 1 (21) 

From Eqs. (18)-(21) we then obtain the relation 

= crA2/(~r - 1 + A 2) (22) 

We have carried out, following in detail the method of Liicke, (5~ a 
numerical calculation of the quantities ff and A as a function of  r for ~ = 10 
and v = 8/3. Our results, reproduced in Fig. 1, are in agreement with those 
of Lticke, in spite of the fact that we have taken as our initial conditions 
x = y = z = 1 rather than the r-dependent initial conditions chosen by 
L/icke. This agreement supports our hypothesis that the solution to the 
Lorenz equations in the turbulent regime is indeed ergodic. As seen from 
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Fig. l .  Numer ica l  results for ~lm (circles) and A (crosses)  as a funct ion of  r, for cr = l 0  
and v = 8/3. A l so  s h o w n  is the theoretical  result [Eq. (33)] for A (line). 

Fig. 1, the relationship between the curves of ~lm and A as functions of r is 
in excellent agreement with the prediction (22), particularly for r < 100. For 
larger values of  r, the "constant" of  proportionality crl/2/(~r- 1 + A2)1/2 
increases with r as indicated by its A dependence, although at a somewhat 
faster rate. As a further check on the result (22) we have plotted in Fig. 2 the 
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Fig. 2. Numer ica l  results for glm (circles) and A (crosses)  as a funct ion of  o, for r = 150 
and v = 8[3. 
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results of  a numerical calculation of  the functional dependence of ~1/2 and A 
on ~ at r = 150, for values of  ~ satisfying 10 < cr < 100. The value of r 
chosen ensures that the system is in the turbulent regime for all the values of  
a considered. The numerical results show that although ~112 exceeds A for 
smaller values of  r it becomes essentially indistinguishable from it at larger 
values of  a, in complete agreement with the relation (22). 

We now introduce the autocorrelation time rc of  the process oJ(t) by the 
relation c~ _= r/(0)%. Substituting from Eqs. (12) and (14)-(16), we obtain 

2 1 A 2 
l ( a +  l) ~(r- 1)= %(a+ 1 ) ~ ( r -  02(1-02  (23) ~2(r - 1)2 + 4 

or, using Eq. (22) to eliminate ~, 

~-o(r - 1)(r - 1) - (~ + 1) (24) 
A2 = ( a 2 _  1) 4~2( r -  1) + % ( r - -  1)(r 2 -  1)(r  1 ) +  ( r  1) 2 

Suppose that, as a first approximation, we take A to be independent of  r. 
Then ( is also independent of  r, and it is necessary that %r >> 1, with % 
independent of  r. Hence 

~ 7c(~ ~ - 1)/[4o- + rc(r 2 - 1)1 (25) 

From the numerical results in Fig. 1 it follows that % _~ 0.03. Observe that 
the dimensionless correlation time is a small number, so that the short 
autocorrelation time approximation required for the derivation of Eq. (9) 
is indeed valid. A more detailed discussion of  the value of r~ and its r and 

dependence is given below. 
Thus far we have only used the equation for x in terms z. In order to 

calculate ~ and A, we now use Eq. (13) for z in terms of x and calculate 
approximately but self-consistently the quantity %. Equation (13) is essentially 
a Langevin equation, and can be written in the form 

~.' + vz '  = A ( t )  - (1/r + x 2 - v ( z )  (26) 

where z'  = z - (z) ,  and A ( t )  is a zero-mean, rapidly fluctuating forcing 
term. From the formal solution to Eq. (26), we find that 

((z') e) = d t '  d t "  e x p [ - v ( t  - t ')] e x p [ - v ( t  - t")] 

x ( A ( t ' ) A ( t ' 9 )  ~- (1/2v),o'(A 2) (27) 

where we have assumed that the forcing term has a short autocorrelation 
time %', and that the process z '  is statistically stationary. Thus 

<z2> - <z> ~ = (1 /2v )%' (<x2y2> - v2<z> 2) (28) 
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In order to obtain a closed equation for ~-o we shall assume that the correlation 
times ~-o and To' are comparable. It is shown in the Appendix that under 
statistically stationary conditions the following result can be derived from 
Eq. (10): 

a(x  ~) = (22x 2) (29) 

Using Eqs. (1) and (4), we can write this result in the form 

(~ (x2y 2) = v 1 + ~ [(or + 2a 2 + 2or + v)(r - 1)(z) - a(v + 2a + 2)(z2)] (30) 

Using the definitions (20) and (21), we see that it now follows from the results 
(28) and (30) that 

2A 2 +  Tcv(1--A 2 )=  rc 1 + ( r ; 1 ) ~ -  v +  4a 2 + ( a  2 - 1 ) ( a _  1) roJ  (31) 

Upon using the results (22) and (24), we obtain an algebraic equation for r o. 
In order to calculate % it is Convenient to make use of the approximations 
~-oe << 4 and *or >> 1. With these approximations, it can he shown that 

rc _ \a  + 1] cr + ~v (r - 1) -1/2 = 0.54(r - 1) -1/2 (32) 

for cr = 10, v = 8/3. We see now that the correlation time does have a weak 
Rayleigh-number dependence; it varies between 0.10 > ~'o > 0.03 for 
50 < r < 240. This is in satisfactory agreement with the simpler estimate 
made above. With the result (12), we now have 

~ j "  _((rU_l)((r_ 1)~-c \1,2 
A _ ~4cr 2 + (-~2 --_ ] ~ a  ~ ])~-oJ _ 1.04(r - 1)-1/, (33) 

The theoretical result (33) is also plotted in Fig. 1. We see that the theory 
correctly predicts the r dependence, but gives the constant of proportionality 
approximately 3570 too large. This discrepancy is not surprising in view of  
the very approximate nature of the result (32). In particular the approxima- 
tion ~'c' ~ ~', used in its derivation has to be regarded with some caution; a 
different constant of proportionality between %' and ~-~ would not alter the 
r dependence, but would alter the numerical coefficient in (32). 

As a further check on the results (32) and (33), we observe from Fig. 2 
that A increases in proportion to a 1/4, as predicted by the theory, although the 
coefficient of proportionality is again too large. 

Liicke (5) has reported numerical results for several fundamental fre- 
quencies of the Lorenz model as a function of r. In the remainder of this 
section we obtain the predictions of the present theory for two of them, and 
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compare them with the numerical results. Consider first the quantity f2 o. 
From Eqs. (18), (20), and (25) we obtain, for large r, 

o(~2_ 1)~ 
f2o 2 - a(r - 1)~ = 4d-~ (~ff Z T)Tc (r - 1) (34) 

Lficke has suggested that, numerically, f2 o is well approximated by f2o 
(r - 1) ~/2. This result would be in agreement with the present theory with the 
approximation of ~ (or %) by a suitable constant (% ,-~ 0.045). On the other 
hand, we have seen that % is not really a constant, but decreases with r. 
This does not seem to be in such good agreement with the numerical result, 
although there may be some evidence at large r for a slower increase with r 
than r 1/2. Lficke has also considered the quantity f2~ 2 = (~2 ) / ( ( z  - ( z ) )2 ) .  
From Eqs. (1), (4), (21), and (30) we find that f2~ is given by 

v[ ( f2~ 2 = - 2 x  ~ v +  1 + 

l - A 2 (  a ) v(r - 1) (v + 2a2 + av + 2cr) 
+ a---- r -  l + y  57> (35) 

Substituting for a and (z)  from Eqs. (11) and (20), and using the result (22) 
to eliminate ~, we obtain 

1) 
f2~ 2 = (2~ 2 + 2 ~ + w + v )  

1 

+ v a - -  1 + A  2 + ~,-- 1(2~2 + 2 ~ +  v ~ , + v )  ( r - -  1) (36) 

Setting A 2 = 0.09, the value that reproduces Liicke's result for f2o, we obtain 

f2z 2 = 73.88 + 1.52(r - 1) (37) 

This is in reasonable agreement with the numerical result f2~ ~ 1.77(r - 1)ill 
In particular we see that for small r (r = 30) the predicted value of f~ 
(f~ = 10.86) agrees well with that computed both numerically and using a 
simple mode coupling approximation, (5~ while for large r the r 1/2 dependence 
is recovered. Unlike the case of rio, the r 1/2 dependence persists for large 
r even when the r dependence of A is incorporated. We have also computed 
the quantity f~ as a function of a for r = 150. The comparison of the 
results with the present theory is shown in Fig. 3, where we have plotted the 
quantity f2~ as given by Eq. (36), with A 2 = 0.09(e/10)~/L This choice of A 
incorporates approximately the e~/4 behavior shown in Eq. (33). We see that 
the theory is again in reasonably good agreement with the numerical results, 
although the predicted a dependence is somewhat stronger. We have not 
calculated f~o as a function of ~, because the numerical technique was in- 
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Fig. 3. Numerical results for D~ as a function of ~, for r = 150 and v = 8/3. The line 
is the theoretical result (36) with A2 = 0.09(~/10)lJL 

sufficiently accurate for large cr, when ~/2 and A are essentially indistinguish- 
able. On the basis of  the above results we may conclude that the dependence 
of  the coefficient in the empirical result f2~ ~ 1.77(r - 1) z/2 on the parameters 
v and ~ suggested by Liicke ~5~ cannot be correct. 

Finally, we note that there appears no way of calculating the quantity 
f2o~ 2 = (5~2)/(.+2), also computed by Liicke, ~5~ using only the fourth-order 
moments  used above. 

3. D I S C U S S I O N  

In this paper we have seen that some systems of  differential equations 
with strange attractors, such as the Lorenz model, can be treated by standard 
statistical methods that are used in treating "no i sy"  systems. We have seen 
that these methods predict the correct functional dependence of certain 
statistical averages on the Rayleigh number r, as well as giving the correct 
amplitude to a good accuracy. In particular, we have found that the relation- 
ship between the quantities ~ and A2 describing the deviation of (z)  and (z 2) 
f rom the steady-state convection solution is predicted very accurately. We 
have also seen that the autocorrelation time rc has a weak r and ~ dependence, 
but that it remains small, thereby justifying the use of  the short-autocorrela- 
tion-time approximation. In deriving the identities (17) and (29) between 
certain statistical moments in the stationary state we have made use of  further 
assumptions in order to simplify the calculation (see Appendix). As a con- 
sequence the predictions of  the behavior of  the basic frequencies f~o and f2~ 
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are quantitatively not as accurate as they might otherwise be. The theory 
predicts correctly the general dependence on r, although the coefficients are 
accurate to only 257o. Similarly, the self-consistent calculation of the auto- 
correlation time predicts the correct r dependence, but with an amplitude 
somewhat too large. We would expect that an even better agreement with the 
numerical results could be achieved if a more careful discussion were under- 
taken. 

In this way we have shown that strange attractors and "no i sy"  systems, 
while apparently dissimilar, can have a great deal in common if we are only 
interested in their statistical properties. Indeed, it is likely that the origin of 
many stochastic systems lies in hidden nonlinear systems with strange 
attractors, and it is therefore reassuring to know that the details of the process 
producing the fluctuations are irrelevant for the gross properties of the system. 

A P P E N D I X  

In this Appendix we present the details of  the calculation of the second 
and fourth moments of  the solution to the stochastic differential equation 
(10) in the short-autocorrelation-time approximation (9). To the author's 
knowledge, the present method has not been applied to a damped simple 
harmonic oscillator with a random frequency component. The only treat- 
ment of such a system hitherto carried out has been by Bourret m~ using the 
Bourret integral equation. ~z2~ However, this equation is not a self-consistent 
approximation for short autocorrelation times/8~ 

From Eq. (10) it is easy to obtain an equation for the quadratic moments 
of x and 2 in the form (8), with 

(x2t (i 2 o) (o o i) f =  x2 , Lo = - b  1 , L1 = -oJ  0 (A1) 
)72] 2a - 2 b  0 -2co 

In order to apply Eq. (9), we have to calculate the quantity exp Lo~-. This can 
be done most easily in the following way. Observe that f = fo exp LoT is a 
solution of  the set of  ordinary differential equations 

f = L o f  (A2) 

Seeking solutions proportional to exp st, we can calculate the eigenvalues s 
of the system (A2). They are given by 

s = - b ,  s = - b  + A, A 2 = 4 a +  b 2 (A3) 

The general solution to the system (A2) is then a superposition of these three 
fundamental solutions: 

f~ = e-bt(A + Be ~t + Ce -At) (A4a) 
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The corresponding expressions for f2 and fa now follow from Eq. (A2): 

f2 = �89 - b A  + (h - 6)Be at - (h + b)Ce -at] (A4b) 

fa = �89 - 2 a A  + ( 1 2 -  b A -  a)Be a t+  (h z + bh - a)Ce -at] (A4c) 

If  the coefficients A, B, and C are now eliminated in favor offl(0),f2(0), and 
f3(0), Eqs. (A4) can be written in the formf~(t) = &jfj(0), where S = exp Lot 
is now known. The following elements of S will be required in what follows: 

12Sll = e-bt(2a + bA sinh At + (2a + b 2) cosh At) (A5a) 

12S~2 = 2e-bt(--b + A sinh At + b cosh At) (A5b) 

h2S~a = 2e-~t(cosh At - 1) (A5c) 

12S2~ = e-bt[ab(cosh At - 1) + aA sinh At] (A5d) 

12S22 = e-bt(b 2 + 4a cosh M) (A5e) 

h2S2a = e - b t [ - b ( c o s h  At - 1) + h sinh M] (A5f) 

The quantity exp - L o t  is obtained by changing the sign of t in the above 
expressions. Evaluating the expression on the right side of Eq. (9) using the 
results (A1) and (A5), we obtain finally the equations 

(d /d t ) (x  2) = 2(x2) (A6a) 

(d /d t ) ( x2 )  = {a + (2/A2)[b(y - c~) + A/3]}(x =) 
+ [ - b  + (4/h2)(y - c0](x2) + (k =) (A6b) 

(d/dt)(Yc =) = (4/h2)[ay + (a + �89 - �89 =) 

+ 2a(x~) + [ - 2 b  + (4/12)(7 - ~)](~2) (A6c) 

where 

fo ~ fo = dr -q(r) cosh hr, /3 = dr ~7(r) sinh AT 

7 = dr ~(r) (A7) 

and ~(r) is the autocorrelation function of the process o~(t) defined by 
Eq. (16). We have again assumed that the process ~(t) is statistically stationary, 
and that the quantity ~ is well defined. 

By assumption, the process x is also stationary, so that we may set the 
time derivatives of all averages equal to zero. From Eqs. (A6b) and (A6e) it 
then follows that 

{a + (2/12)[b(7 - a) + A/3]}[b - (2/12)(7 - c,)] 
+ (1/A2)[2ay + (2a + b2)c~ - b~/3] = 0 (A8) 
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An examination of the definitions (A7) suggests the approximation 

/3, 7 << ~ (A9) 

valid for correlation times that are short, but not too short, as observed in 
the numerical results. (1~ It follows that the condition (14) is required for 
statistically stationary solutions. On substituting this condition into Eq. 
(A6b), we obtain the result (17). 

We now turn to the fourth-order moments. Writing the equations for the 
five fourth-order moments in the form (8), we obtain 

(i4o o o/ 2x 3 - b 3 0 0 
f -  [ 2 2 x 2 1 ,  Lo ---- 2a - 2 b  2 0 (A10a) 

\ 3x / 0 3a -3b 1 
\ 2~ / 0 0 4a - 4b /  

and (000 01/ - ~  0 0 0 
L1 = 0 -2r 0 0 (A10b) 

0 0 -3oJ 0 
0 0 0 -4oJ 

Again we have to calculate the matrix exp Lot. Proceeding as before, we find 
that the eigenvalues s of Lo are given by 

s = - 2 b ,  - 2 b  + A, - 2 b  _+ 2A (Al l )  

where again A 2 = 4a + b 2. The general solution is thus 

f~( t)  = e-2bt(A + Be ~ + Ce -a~ + De T M  + Ee -2~t) (AI2) 

with corresponding results for f2( t ) , . . . , f s ( t )  obtained from the equation 
f = Lof .  We can write the result in the form 

f ( t )  = e-2btT{A, Be ~t, Ce -~t, De 2~t, Ee -2~} (A13) 

where the matrix T has the rows 

Tlj = (1, 1, 1, 1, 1) (A14a) 

T2s = ( - �89 +�88 - �89 _+�89 - �89 (A14b) 

Tas = ( - � 8 9  + lb2, T-�88 + �88 2, a T- �89 + �89 2) (A14c) 

T~j = (�89 T-kah +_ ~b2h - kb 3, - ~ a b  +_ 3 t +_ �89 - �89 3) (A14d) 

Tsj = (a 2, - a  2 - �89 2 +_ �89 a z + 2ab - �89 ~ T- �89 -Y- abh) (A14e) 
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We can now determine the constants A, B, C, D, and E in terms of f~(0) 
(i = 1,..., 5). We obtain 

h4A = 6a2fl(0) - 12abf2(O) + (6b 2 - 12a)fa(0) + 12bf~(0) + 6f5(0) (A15a) 
h~B = (4a 2 + 2ab 2 + 2abh)f~(O) + ( - 2 b  a + 4ah - 2hb2)f2(0) 

+ ( - 6 b  2 - 6bh)fa(0 ) + ( - 4 h  - 8b)f~(0) - 4f~(0) (A15b) 
h4D = (a 2 + 2ab + �89 4 + �89 + abh)fl(O ) + (6ab + 2b 3 + 2ah + 2hb2)f2(0) 

+ (3b 2 + 6a + 3bh)fa(0 ) + (2b + 2h)f~(0) + f~(0) (A15c) 

C(h) = B ( - h ) ,  .E(h) = D ( - h )  (A15d) 

The above relations determine the matrix exp Lot as the matrix of coefficients 
o f f ( 0 )  in the equations f o r f ( t ) .  In order to calculate the right-hand side of 
Eq. (9), let 

(Ll(t)(exp Lo-c)L~(t - r ) e x p  - LoT) = ~(r)7(r) (A16) 

where 7 is a 5 x 5 matrix, and ~ the autocorrelation function of the process 
o~(t). We shall be interested in the correlations (x  ~) and (22x2). From Eq. 
(9) we find that these are connected by the equations 

d 
(x  4) = 4(2x a) (A17a) 

(A17b) 

After a considerable amount of algebra the expressions for 721 and 723 
reduce to 

72~ = -(4b/h2)(co sh h~- - l) + (4/h) sinh hr, 72a = 0 (A18) 

In a statistically stationary state 722 will not be required. Equations (A17) 
now give, using again the approximation (A9), the relation 

[(4bc~/h 2) - a](x ~) = 3(2~x 2) (A19) 

Finally, using the stationariness condition (14), we find that the relation 
(A19) reduces to the result (29). 
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